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This paper studies semantic equivalences and preorders for sequential systems with silent moves,

restricting attention to the ones that abstract from successful termination, stochastic and real-

time aspects of the investigated systems, and the structure of the visible actions systems can

perform. It provides a parameterized de�nition of a such a preorder, such that most such pre-

orders and equivalences found in the literature are obtained by a suitable instantiation of the

parameters. Other instantiations yield preorders that combine properties from various seman-

tics. Moreover, the approach shows several ways in which preorders that were originally only

considered for systems without silent moves, most notably the ready simulation, can be gener-

alized to an abstract setting. All preorders come with|or rather as|a modal characterization,

and when possible also a relational characterization. Moreover they are motivated by means of an

(also parameterized) testing scenario, phrased in terms of `button pushing experiments' on gen-

erative and reactive machines. The testing scenarios for branching bisimulation, �-bisimulation

and coupled simulation and the corresponding modal characterizations are especially new.

Introduction

A general introduction to this line of research can be found in Van Glabbeek [17]. There a similar

programme was carried out for �nitely branching sequential systems without internal actions. Here

this work is generalized to a setting of in�nitely branching processes with silent moves, divergence

and underspeci�cation.

I will start with the testing scenarios in Section 1, leading to a parameterized notion of ob-

servability in Section 2. Section 3 contains the de�nition of the observable behaviour, according

this notion, of systems represented as elements of a labelled transition space. This is where the

technical part starts. Some readers may wish to read Sections 2 and 3 in parallel. For each no-

tion of observability a may and a must preorder is de�ned in Section 4, such that the preceding

formalization of observable behaviour constitutes its modal characterization. Then the preorders

and their associated equivalences are partially ordered by inclusion through an exhaustive series

of inclusion results and counterexamples thereof. In Section 5 relational characterizations of the

preorders are provided when possible, and in Section 6 the preorders and equivalences found in the

literature are positioned in the framework obtained.

1 Testing scenarios

In this section a variety of testing scenarios will be proposed, each determining a notion of observable

behaviour of systems. In these testing scenarios the internal structure of systems is not considered

observable; only the interactions of the system with the environment (observer) are. In order to

visualize these interactions one can imagine something like the generative or reactive machine of

Figure 1. The machine acts as a black box in which the investigated system can be placed. It has

switches, displays and other gadgets that specify the interactions with the experimentator. How

the machine reacts to stimuli received on these channels depends on the system inside, but the

observer sees only the reactions of the machine without knowing how they are caused.
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The machines employed in this paper are parameterized by a set A of observable actions, and

are suitable only for the analysis of systems whose relevant behaviour can be expressed in terms

of the actions a 2 A they can perform. Which activities of an investigated system are listed in

A is a matter of choice, and depends on the level of abstraction at which one wants to analyze

systems. Moreover, di�erent activities that are indistinguishable on the chosen level of abstraction

are interpreted as occurrences of the same action a 2 A. Activities of the investigated system that

are not listed in A are called internal. As internal actions are not distinguished, all of them will be

denoted by the symbol � 62 A. In this paper the choice of A is �xed, suggesting (until Section 7)

that only one level of abstraction will be considered. The reader should therefore keep in mind

that all forthcoming testing scenarios, notions of observability, preorders and equivalences are in

fact parameterized by this choice.

Throughout this paper I will restrict attention to the treatment of uniform concurrency [6].

This means that the internal structure of the actions a 2 A is not investigated. So it remains

unspeci�ed if these actions are in fact assignments to variables or the moves of a chess player or

anything else.

a b z

. . . c
replicate

a b z

. . .

replicate

Figure 1: A generative and a reactive machine

In this section I distinguish generative and reactive systems. A generative system spontaneously

performs actions, even if no input from the outside world is received. The only way to inuence

such a system is to restrict its possible behaviour. A reactive system on the other hand only acts

in response to input from the environment. Whether an actual system should be classi�ed as

generative or as reactive is largely a matter of perspective. When a system needs to communicate

(synchronously) with the environment, one can either take a successful communication for granted

and consider an environment that does not permit the communication to be `restrictive', or one

could take the absence of communication to be the default and consider a successful communication

to be a reaction on the act of the environment of permitting such a communication.

The generative machine of Figure 1 is thought to be an interface between generative systems

and their environment. It has �ve features that specify its potential interactions with the observer.

� Its most basic ingredient is a display. Every time a visible action is generated by the system

that is supposed to be lodging inside, the name of this action appears in the display. It

stays there until the display is cleared for presenting another action. If the same action is

generated twice in a row, clearing the display in between is considered observable. This allows

the observer to record (a sequence of) visible actions performed by the investigated system.

� Secondly there is a green light, that allows one to record internal activity as well. It is

supposed to be on when (internal) activity takes place, and o� otherwise. In the latter case

the investigated system is said to be idle.

� Thirdly there are several menu lights|one for every action a 2 A. These show which visible

actions could currently be performed.

� Furthermore the machine contains a series of switches|again one for every visible action.

The observer can put each of these switches in one out of two positions: free or blocked. If a

switch is put on blocked, the corresponding action may not be generated by the investigated

system. This is the way in which, in the generative testing scenario, the behaviour of a system

is restricted by its environment.
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� Finally our machine has a replication button. Pressing this button results in a multitude of

copies of the machine together with the residing system. In each of these copies the system

will be in the same state as the original. The observer (and her friends) can now continue

the session with each of these copies (in parallel).

Note that the lights and the display can be inuenced by the system, but not directly by the

environment, whereas the switches and the button can be inuenced by the observer, but not by

the investigated system. Thus input and output channels are separated.

The reactive machine serves as interface for reactive systems. Its lights and replication button

play the same rôle as the ones of the generative machine. However, the display and the switches

have been replaced by a series of buttons|one for every a 2 A. As long as the buttons are not

touched, the system rests. If the experimentator applies continuous pressure on the a-button, the

system can react either by performing an a-action, in which case the button goes down, or by

performing internal activity, possibly followed by an a-action. As long as internal activity goes on

(maybe forever), the green light is on. After the a-button goes down, the system is in rest again

and the light goes o�, until either another button is pressed upon, or the a-button is released and

put under pressure again. If the light goes o� without the a-button going down, or if it doesn't go

on in the �rst place, the a-experiment has `failed' and the experimentator knows that the system

has reached a state in which no a-action and no further internal activity is possible.

The reactive testing scenario, including the green light and the replication facility, stems form

Milner [27]. The menus and the generative scenario originate from Van Glabbeek [17]. The

term generative comes from Van Glabbeek, Smolka, Steffen & Tofts [18].

If the reactive testing scenario is expanded so as to allow the application of pressure on several

buttons at the same time, it strongly resembles the generative testing scenario. The buttons that

are not down and on which pressure is applied correspond to the switches that are put on free.

Moreover the a-button going down corresponds to the name a appearing in the display. A di�erence

is that in the reactive testing scenario a button that went down needs to be released before it can

be used again. This would correspond to the property of switches to automatically jump to blocked

whenever the corresponding action appears in the display. Under the assumption that the observer

can rearrange the switches as she sees �t at any time, this change is of little signi�cance, expect

that it enables alert replication as explained below. Furthermore the state of the reactive machine

in which no button receives pressure does not correspond to the state of the generative machine in

which all switches are set on blocked. Namely in the former case not even internal activity is allowed,

whereas in the latter case only the visible actions are blocked. In order to mimic this reactive state

in the generative scenario, the generative machine should be equipped with an on/o�-switch. This

would not increase its testing power. Reversely, the state of the generative machine in which all

visible activity is disabled corresponds to a state of the reactive machine in which only a button is

put under pressure of which we know that the corresponding action cannot occur anyway.

Thus the reactive testing scenario can be regarded as a restricted version of the generative

scenario in which only one switch at a time can be set free. From this point of view there is no

further need to distinguish generative and reactive systems.

Now a variety of testing scenarios can be obtained by considering restricted versions of the

machines described above, and variations in the capability of the observer to use them fully. To

be precise, in this paper I consider a testing scenario to be fully determined by the positioning of

checkmarks in the questionnaire below, one in each column.

Switches or Buttons? Lights? Replication? Global testing? Finiteness?

No switches or buttons No lights No replication No global testing even �nite switching

Switches for blocking Green light In stable states In stable states �nite width & length

Blocking and deblocking Menu lights Everywhere Everywhere, sloppy �nite length only

�-replication Everywhere, weak all in�nite

Continuous Everywhere, alert divergence sensitive

The �rst question asks whether or not the machine comes with switches (or buttons if one prefers

the reactive viewpoint). If there are switches, one can consider a machine in which the observer is
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free to arrange the switches as she sees �t at any time, or one whose switches start out in the free

position and can be put on blocked, but not back. The second questions asks whether the green

light is present and if so if also the menu lights are present. I will not consider machines with menu

lights but without the green light. The display is always present. The third question deals with

the replication button. If it is present, one can distinguish the cases that is can be used in every

state of the investigated system, or that replication is only possible when the system is idle (and

the green light o�). In the generative testing scenario the system can be idle only in a state where

no internal activity is possible. Such a state is called stable. In case the observer makes a copy

of a system immediately before a visible action happens, one may (or may not) assume that this

can be noticed by the observer (by the fact that no time elapses between pressing the replication

button and observing the action). The observer is then in the possession of a copy, known to be in

the state where the visible action originated from. If this is possible I speak of �-replication, in the

spirit of Baeten & Van Glabbeek [5]. The last answer on the third question is that the observer

may hold his thumb on the replication button during an extended period of time. This will create

an ordered series of copies with the property that from each state the system has passed through,

at least one copy is available. This possibility of continuous copying was independently suggested

to me by Peter Weijland and Frits Vaandrager.

The fourth question deals with global testing, the scenario investigated inMilner [27]. Here it is

assumed that by making su�ciently many copies, all possible further behaviours of the investigated

system can be recorded on one of the copies made. To this end one can assume that the behaviour

of a system is completely determined by the status of the switches (buttons), and certain ambient

conditions (the weather), and that it is possible to expose a copy of the machine to each possible

weather condition [27]. By combining the observations made on each copy of the machine, it is

possible to tell, not only that certain behaviours occurred, but also that certain behaviours did

not occur. As in the previous question, one can choose if global testing is possible in stable states

only, nowhere, or everywhere. As global testing presupposes replication it seems inconsistent to

check the �rst or second box for question 3, and the third one for question 4. Still I will allow such

answers as a restricted usage of replication. In case global testing is possible everywhere, I consider

three subcases. My default assumption is that internal activity can happen between every two

actions/observations of the experimentator. Thus, in order to ascertain that in a particular state

some behaviours are possible and some others are impossible, one needs to make a lot of copies at

once, some of which are used to see that a number of behaviours actually happen, while the rest is

exposed to all weather conditions in order to ascertain that some behaviours do not happen. Under

the sloppy scenario this requires two hits of the replication button (the second one to spread a copy

over all weather conditions), and internal activity can take place between these hits. Under the

weak scenario, all copies can be made at once. Another possibility is that the observer has such

good reexes that it can hit the replication button before any internal activity can take place. In

particular, the observer can make copies of the system in a state that is known to be immediately

after the occurrence of a visible action. This I call the alert scenario.

The last question actually combines three questions on the �niteness of observations. First of all

one can choose that every time the replication button is pressed only one copy is made (or �nitely

many, which is equivalent), so that one could speak of a duplication button, or that at least as

many copies are made as the branching degree of the investigated systems. The �rst alternative is

incompatible with global testing (unless one restricts attention to �nitely branching systems, as in

[27], in which case both alternatives coincide). Therefore I will no further consider this combination.

Also I will not investigate the possibility of a replication facility of in�nite cardinality, smaller than

the branching degree of the investigated systems. Secondly, one may ask if every time only �nitely

many switches can be put on free, or arbitrarily many. The �rst alternative, in combination with

answer 3 on question 1, is the reactive scenario. Thirdly, one may ask if observations can last

in�nitely long. The option �nitely long in combination with in�nite replication only guarantees

that each copy of the machine that participates in the experiment will be abandoned by its observer

after a �nite time. It does not guarantee that there is a global time at which the entire experiment
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is ended. Now if in�nite replication is selected, I will assume that in�nitely many switches can

be set free as well. Moreover, I will not consider the combination of �nite replication and in�nite

duration. This would give rise to countable replication as well, which for countably branching

systems is as good as arbitrary replication, and for uncountably branching systems falls outside the

scope of this study. This yields only four, linearly ordered answers on the three �niteness questions.

In case observations may last forever, one could observe that from a certain point onwards nothing

observable happened. In that case there is a choice of only recording what happened up to that

point, which yields an observation that could have been made in a �nite amount of time as well, or

to explicitly add to the observation that nothing happened since. I call the latter option divergence

sensitive, although it makes an in�nite progression of internal activity (divergence) observable only

in combination with the green light.

2 Notions of observability

In this section I describe the type of observations that can be made according to each of the testing

scenarios of the previous section.

T In each of the testing scenarios it is possible to terminate the session at the machine at will.

The observation that only consist of terminating the session is denoted T .

a; a� In each of the testing scenarios it is possible to observe the occurrence of a visible action (by

its appearance in the display, or by the corresponding button going down). The observation

of the action a 2 A, followed by the observation ', is denoted a'. My default assumption

is that internal activity can happen before and after any observation. In some scenarios

this assumption is partly given up, and one can distinguish between a' and a�', the latter

explicitly allowing internal activity to happen between a and '.

In the simplest testing scenario (the �rst box checked in every column), all observations are

�nite and of the form a' or T . Such an observation is a just a �nite sequence of actions,

ended by T . If observed during a session with system P , this sequence is called a (partial)

trace of P , and the observable behaviour of P is given by the set of all its traces (that could

have been observed). It need not to be assumed here that the machine can be restarted to

observe several traces.

� The observation �' says that ' can be observed after some (or none) internal activity. It is

present in all testing scenarios. However, under the default assumption that internal activity

can take place anywhere, �' is equivalent with ' and the operator � is redundant.

0 If the green light is present, it is possible to observe that it is o�, denoted by 0. This means

that no activity goes on in the system. If moreover no switches or buttons are present to

stimulate the system, it is di�cult to image what on earth could resume activity in it. Hence

I will assume that once the green light is o�, it will stay that way and no further observations

can be made. This adds a constant 0 to the language of observations.

With the constructions T , a and 0, one can built observations that look like a sequence of

actions, ended by either T or 0. If a sequence of actions ending in 0 is observed, one knows

that the investigated system (P ) can perform the listed actions in succession and reach a

state where no further activity is possible. Such a sequence is called a complete(d) trace of P .

FT If both the green light and the switches are present, and the switches can be manipulated

freely, it is possible to recover from an idle period, and one can at least observe a sequence

of actions interspersed with idle periods, denoted as a string over A

�

[ 0. Moreover, the

observation can be enriched with information on the status of the switches at various points.

Now I assume that internal activity happens independent of the positions of the switches.

Thus the only relevant information about the switches is their position when an action appears

in the display, or during an idle period. Suppose one observes for instance that �rst an action
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a happens (the light must than be on), then b (the light is still on), then an idle period (the

light is o�) and then a again (the light must be on again). This observation can be denoted

as ab0aT . Now if X

1

, X

2

and X

5

are the sets of switches that were put free when a, b and

a happened respectively, and X

3

, X

4

are the sets of free switches during the �rst and second

part of the idle period, the full observation can be denoted a(X

1

)b(X

2

)0(X

3

)0(X

4

)c(X

5

)T .

Now I make another assumption about the nature of the systems under investigation, namely

that whenever a(X)' can be observed, a must be in X (that part is obvious) and for any

other set Y of actions containing a, a(Y )' could have been observed as well. In other words,

whether a can happen or not does not depend on the position of any other switch than the

a-switch. As pointed out to me by Jan Bergstra, this rules out built-in priority mechanisms

that for instance allow a to happen only if b cannot happen. Thus an observation a(X) can

without loss be shortened to a, and 0(X) will be abbreviated by

e

X. If

e

X is observed one

knows that the investigated system is unable to continue with either an internal action, or

an action from X . The set X is then said to be refused, and called a refusal set. This adds a

unary operator

e

X to the language of observations, for any X � A.

With these operators and the constructions a and T one can built observations that look like

sequences over A [ P(A). If observed during a session with system P , such a sequence is

called a failure trace of P . In failure trace semantics (checkmarks 3-2-1-1-2), the observable

behaviour of a system is given by its set of failure traces.

F In case the switches can not be reset from blocked to free, it is, as in the completed trace

scenario, not possible to recover from an idle period. In combination with the green light an

observation

e

X can be made, but in that case the machine reaches a state of deadlock. Thus

the unary operation

e

X needs to be replaced by a constant

e

X.

With these constants and the constructions a and T one can build observations that look like

sequences ending in T or

e

X. A sequence �

e

X with � 2 A

�

and X � A, also denoted <�;X>,

is called a failure pair. In failure semantics (checkmarks 2-2-1-1-2), the observable behaviour

of a system is given by the set of its failure pairs, its failure set, and the set of its traces.

R;RT If the menu lights are present I assume that they light up only during idle periods. Thus

the observation 0 can be replaced by an observation (X;

e

Y ), where X is a set of actions whose

light is seen to be burning, and

e

Y is a set of actions whose light is seen to be o�. Of course

the most informative observations are the ones where X and Y are complements, and by

restricting attention to such observations, half of the pair (X;

e

Y ) is redundant. However, the

presentation used here allows for smoother proofs later on, and generalizes easier to a �nite

setting. If the switches can be used for blocking only, there can be only one idle period in an

observation, namely at the end, and a constant (X;

e

Y ), forX; Y � A, is added to the language

of observations. If the switches are used for blocking as well as deblocking, one needs a unary

operator (X;

e

Y ), that for convenience can be split in operatorsX and

e

Y . In combination with

these observations the information obtained from the position of the switches is redundant.

If there are no switches, an idle period can occur only when the menu of further actions

is empty, so the presence of menu lights adds nothing to the observational powers of the

machine. In the absence of the menu lights and the green light no refusals can be observed,

and one is left with the observations T and a, independent of the answer on question one.

F

�

; FT

�

; R

�

; RT

�

The observations above exhaust all answers on the �rst two questions in case it

is possible to set in�nitely many switches free (answer 2{5 on question 5). In case only �nitely

many switches can be on free, one can make observations as in F or FT with X required

to be �nite. In combination with the menu lights, choosing answer 1 on question 5 can be

interpreted as dealing with a machine in which the menu lights are also buttons that only light

up if they are depressed (and the corresponding action is on the menu). By requiring that

only one (or �nitely many) lamp-buttons can be depressed at a time, one obtains observations

as in R or RT , but with X and Y �nite.
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S The observation S' can be made if the system is in a stable state where it admits the

observation '. So far none of the testing scenarios discussed gave rise to this observation,

but it will be handy later on. In order to cast this observation in the testing framework, one

could add a question to the questionnaire from the previous section regarding the presence

of a switch that simultaneously blocks all visible actions. If the green light goes o� when this

switch is engaged, a stable state has been reached. In the presence of switches for every action

separately that can be manipulated in all directions, this universal switch is redundant, and

the observation S' corresponds with

e

;'. There is no testing scenario justifying observation

S in the absence of the green light. In fact, the observation 0 (or

e

X) is made whenever S is

observed and no visible action follows immediately (and X is the set of free switches).

^; ŝ If a duplication button is present, one can make an observation ' on the original machine

and an observation  on the duplicate, and combine these observations as ' ^  . This adds

a binary operator ^ to the language in case one of the answers 3{5 is selected on question 3

and answer 1 or 2 on question 5. In case duplication is possible in stable states only, from

the fact that duplication succeeds one can conclude that the machine is in a stable state, and

an observation S(' ^  ), shortened to ' ŝ  , is obtained.

V

;

V

s In case in�nite replication is selected (answer 2{5 on question 3 and 3{5 on 5), one obtains

observations

V

i2I

'

i

or

V

s

i2I

'

i

from the observations '

i

made on the respective copies. The

size of the index sets I may be bounded by the branching degree of the systems considered.

� In case �-replication is selected one may do an observation 'a . This di�ers from an observa-

tion '^a , as the latter one allows internal activity to happen between the making the copy

where ' will be observed and the occurrence of a. If a� is selected instead of a, �-replication

yields an observation 'a� instead of 'a .

b In case continuous copying is selected it is possible to observe  after some period in which

only internal activity takes place, and to observe ' in each copy of the system in a continuous

period prior to  . This gives rise to an observation ' just before  , denoted '� . Continuous

copying also enables �-replication of type 'a . In Section 6 I will show that the observations

� and b capture everything that can be observed with continuous copying.

1 If observations may last forever one may observe in�nite sequences of actions. In case switches

or menus are available, these in�nite sequences may be interspersed with observations

e

X,

X or S. In combination with in�nite replication one may propose that more complicated

observations are possible, involving an in�nity of nested conjunctions. It turns out however

that such observations add nothing that is not observable without them. Therefore I will not

consider them from the onset.

�; � In the divergence sensitive scenarios there is an observation stating that nothing is observed

for an in�nite amount of time. In particular, it is not observed that the green light is o�. If

there is a green light, one can conclude that an in�nite sequence of internal activity takes place

(divergence), and the observation is denoted �. If there is no green light, one concludes that

the system either diverges or reaches a state where no further activity is possible (deadlock).

This observation is denoted �.

:s ;�:;: If global testing is selected and observations may last in�nitely long, it is possible to do an

observation :' whenever ' cannot be observed. Namely, expose the system to all possible

weather conditions and make in each of the copies an observation that is di�erent from '.

The negation operator comes in three avours (:s , �:, :), depending on whether global testing

is possible only in stable states or everywhere, and in the latter case on whether or not the

sloppy scenario is selected. In fact the de�nition of the operators �: and : will look the same,

but in scenarios with : the global assumption that internal activity can take place before any

observation is given up. The di�erence between the weak and the alert replication scenarios

(answers 4 and 5 on question 4) is made by choosing either a or a� as action observations (see
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above). Under the sloppy scenario there is no di�erence between a' and a�'.

W

The observation

W

i2I

'

i

can be made if one of the observations '

i

is made. It is merely an act

of abstraction from the side of the observer and is redundant in all testing scenarios, except

for sloppy global testing. Namely �:

W

i2I

'

i

is a stronger observation then

V

i2I

�:'

i

. The

former observation says that after some internal activity one may reach a state where one can

observe that none of the observations '

i

can be made, whereas the latter says that for every

observation '

i

it is possible to perform some internal activity and reach a state where one

can observe that '

i

can not be observed. I prefer the stronger interpretation of the sloppy

global testing scenario, and

W

will for convenience be part of all testing scenarios.

Each of the items listed above contributes to the language of all possible observations. A notion

of observability is completely determined by the choice of these items and a selection of closure

properties, and this choice is completely determined by the chosen testing scenario. Here I consider

the following closure properties:

� This closure property says that internal activity can happen before any observation that does

not start with :, ^,

V

or

W

. The set of all observations that can be preceded by internal

activity, i.e. are not of the form :' etc., is denoted

j

O(�). All notions of observability of this

paper have this closure property.

6�; 6� If global testing is selected but observations are of �nite length, it is not always possible to

observe :' if ' cannot be observed. Namely if the system can diverge, by never performing an

observable action nor putting o� the green light, the diverging copy of the replicated system

will never reach a state in which one knows that it will produce an observation di�erent from

'. Now the closure property 6� inhibits the observation :' (resp. �:' or :s') for systems that

can diverge, at least if ' 2

j

O(�). It should only be selected if divergence is not observable,

but deadlock is. Similarly, closure property 6� inhibits such observations for systems that

can diverge or deadlock. It should be selected only if neither deadlock nor divergence is

observable.

De�nition 1 A notion of observability is a subset of

fT; a; �; a�; �;

W

; 0; F

(�)

; FT

(�)

; R

(�)

; RT

(�)

; S; ^; ŝ ;

V

;

V

s ; �; b; 1; �; �; :s ; �:; :; 6�; 6�g

(1) always containing T , (a or a�), � , � and

W

, and one of �, �, 6�, 6�, :s , �: and :.

(2) containing at most one entry from 0; F; FT; R; F

�

; FT

�

; R

�

, the completed observations,

(3) not containing RT without FT , RT

�

without FT

�

, b without � and a, or � without

V

or ^,

(4) not containing one of 1; :; �:; :s ;

V

;

V

s with one of ^; ŝ ; F

�

; FT

�

; R

�

; RT

�

,

(5) not containing � or � without 1, or �(�) with 6�(6�), or a completed observation with � or 6�,

(6) and not containing �; 6� or a stable observation (S; ŝ ;

V

s ;:s ) without a completed observation.

Table 1 proposes a name and abbreviation thereof for each of these notions. Check which of the

20 listed combinations of observations occurs in N , and make a name (abbreviation) by combining

the corresponding keywords (abbreviations). There may be several keywords from the �rst column,

but at most one from the second, namely the �rst one that applies. Redundant parts, such as 1

in the presence of �, may be omitted. It will follow from Theorem 1 that notions with the same

name yield identical preorders.

For each notion of observability N , the class

j

O

N

of potential N -observations is de�ned inductively

by the clauses N �f�; 6�; 6�g listed in this section. If for example N=fT; a; �; �;

W

;

V

; FT; �;1;�g,

i.e. divergence sensitive stability respecting failure �-simulation (FS

s��

), then

j

O

N

is the smallest

class satisfying

� T;� 2

j

O

N

and � 2

j

O

N

for � an in�nite sequence over A [ f

e

X j X � Ag;

� if ';  2

j

O

N

, a 2 A and X � A, then a' 2

j

O

N

,

e

X' 2

j

O

N

, �' 2

j

O

N

and 'a 2

j

O

N

;

� and if '

i

2

j

O

N

for i 2 I then

W

i2I

'

i

2

j

O

N

and

V

i2I

'

i

2

j

O

N

.
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F

�

, FT

�

, R

�

or RT

�

�nite

�

b; �; a and : branching bisimulation (BB)

^ or ŝ �nitary

�

: and a delay bisimulation (DB)

1 in�nitary

1

: and a� weak bisimulation (WB)

� or � divergence sensitive

�

;

�

�: and

V

coupled simulation (CS)

6� (or 6�) (strongly) convergent

#

;

##

:s and

V

stably coupled simulation (SCS)

S, FT or RT stability respecting

s

�: but not

V

contrasimulation (C)

� but not b �-

�

:s but not

V

stable bisimulation (SB)

0 completed

0

V

or ^ simulation (S)

F , F

�

, FT or FT

�

failure F

V

s or ŝ stable simulation (SS)

R, R

�

, RT or RT

�

ready R not F or R trace (T)

Table 1: Naming convention

3 Observable behaviour

This section describes the observable behaviour of systems that are represented as elements of a

labelled transition space, according to each of the notions of observability discussed before.

De�nition 2 A (�-bounded) partial labelled transition space (PLTS) is a triple (IP;!; ") with IP

a class (of processes), "� IP (the underspeci�ed processes) and !� IP � Act � IP for Act a set (of

actions), such that for p 2 IP and � 2 Act the class fq 2 IP j p

�

�! qg is a set (of cardinality < �).

Notation: Write p

�

�! q for (p; �; q) 2! and p

�

�! for 9q 2 IP : p

�

�! q. Not p " is denoted p #.

I will consider transition spaces labelled over Act = A

�

[ f�g. The elements of IP represent the

systems we are interested in, and p

�

�! q means that system p can evolve into system q while

performing the action �. I use the word `space' instead of `system' to emphasize that the elements

of an PLTS are all systems under investigation, and not merely the states of a single system. It

is common to assume that the transitions are instantaneous, but here it su�ces to assume that

they take a �nite amount of time. Furthermore, in every state a �nite amount of internal activity

can take place (or none at all) without any transition being performed, but after this activity the

system has to take one of its outgoing transitions, unless they are all labelled with actions that are

blocked by the environment (or that have buttons which are not under pressure). This is known

as a progress assumption. Systems that (also) have states in which an in�nite amount of internal

activity can take place, can be modelled by attaching a � -loop (p

�

�! p) to those states. Finally

I assume that in a �nite time only �nitely many states are passed through, i.e. I consider discrete

systems only.

My main interest is in total LTSs where "= ;. Here the convention applies that all (outgoing)

transitions of the represented systems actually appear in the LTS. However, sometimes only partial

information on the represented systems is available, and then a partial LTS is used, that only

contains the transitions of whose presence one is certain. If there is no certainty that all transitions

leaving a given state are represented, this state is labelled with the symbol ".

For a total LTS IP and p 2 IP, one could now de�ne the set O

N

(p) of observations that can

be made when p is placed in the machine that gives rise to the notion N of observability. But for

a partial LTS there is insu�cient information to do so, as there may be transitions that are not

speci�ed in IP. However, one can de�ne a lowerbound and an upperbound of the set of observations

that can be made, depending on the extra outgoing transitions of underspeci�ed processes.

De�nition 3 Let (IP;!; ") be a (�-bounded) PLTS, labelled over Act = A

�

[ f�g, and let N be

a notion of observability. The functions O

N

;H

N

: IP ! P(

j

O

N

) of de�nite and hypothetical N -

observations of a process are inductively de�ned by the clauses below. The clauses for O

N

are the

ones above the line that are marked with an element of N [ f�g, whereas the ones for H

N

are the

same clauses with the rôles of O and H exchanged, together with the ones under the line that are

marked with an element of N [ f"g. (Thus the clauses � and " are used regardless of N .)
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(T ) T 2 O

N

(p)

(a) a' 2 O

N

(p) if p

a

�! q ^ ' 2 O

N

(q)

(�) ' 2 O

N

(p) if p

�

�! q ^ ' 2 O

N

(q) ^ ' 2

j

O(�)

(�) �' 2 O

N

(p) if ' 2 O

N

(p)

(0) 0 2 O

N

(p) if p 6

�

�! for �2Act ^ p #

(F )

~

X 2 O

N

(p) if p 6

�

�! for �2X[f�g ^ p #

(FT )

~

X' 2 O

N

(p) if p 6

�

�! for �2X[f�g ^ p # ^ ' 2 O

N

(p)

(R) (X;

~

Y ) 2 O

N

(p) if p 6

�

�! for �2Y [f�g ^ p # ^ p

a

�! for a2X

(RT ) X' 2 O

N

(p) if p

a

�! for a2X ^ p 6

�

�! ^p # ^ ' 2 O

N

(p)

(^) ' ^  2 O

N

(p) if ';  2 O

N

(p)

(

V

)

V

i2I

'

i

2 O

N

(p) if '

i

2 O

N

(p) for all i 2 I

(

W

)

W

i2I

'

i

2 O

N

(p) if '

i

2 O

N

(p) for some i 2 I

(S) S' 2 O

N

(p) if p 6

�

�!^ p # ^ ' 2 O

N

(p)

( ŝ ) ' ŝ  2 O

N

(p) if ';  2 O

N

(p) ^ p 6

�

�!^ p #

(

V

s )

V

s

i2I

'

i

2 O

N

(p) if '

i

2 O

N

(p) for all i 2 I ^ p 6

�

�!^ p #

(�) 'a 2 O

N

(p) if p

a

�! q ^ ' 2 O

N

(p) ^  2 O

N

(q)

(b) '� 2 O

N

(p) if p=q or p

�

�! q ^ '2O

N

(p) ^  2 O

N

(q)

(1) � 2 O

N

(p) if � is an in�nite sequence over fa;

~

X; X; Sg and for any su�x � of �,

`� 2 O

N

(p)' is derivable from `� 2 O

N

(p)' using the clauses in N � f1g.

(�) � 2 O

N

(p) if p

�

�! p

1

�

�! p

2

�

�! � � �

(�) � 2 O

N

(p) if p

�

�! p

1

�

�! p

2

�

�! � � � _ p 6

�

�! for �2Act

(:s ) :s ' 2 O

N

(p) if ' 62 H

N

(p) ^ p 6

�

�!^ p #

(�:) �:' 2 O

N

(p) if ' 62 H

N

(p)

(:) :' 2 O

N

(p) if ' 62 H

N

(p)

(") ' 2 H

N

(p) if p " ^ ' 2

j

O(�)

(6�) ' 2 H

N

(p) if p

�

�! p

1

�

�! p

2

�

�! � � � ^ ' 2

j

O(�)

(6�) ' 2 H

N

(p) if (p

�

�! p

1

�

�! p

2

�

�! � � � _ p 6

a

�! for a2Act) ^ ' 2

j

O(�)

Here a 2 A, X; Y � A and I a set (of cardinality < �).

There are also clauses F

�

, FT

�

, R

�

and RT

�

, de�ned as above, but with X and Y �nite.

Futhermore the clauses for a�' and 'a� (if a� 2 N) are obtained as special cases of a and �.

Most clauses in this de�nition should be su�ciently motivated by the previous section. Clause (�)

says that internal activity can happen before any observation that does not start with :, ^,

V

or

W

. If : 62 N , the condition ' 2

j

O(�) can equivalently be omitted. As menu lights are assumed

to be operational only in stable states, one has a condition p 6

�

�! in the clauses (R), (RT ), etc.,

just as in the clauses (0), (F ), etc. In an underspeci�ed state p one can not be sure that there is

no outgoing � -transition, so no de�nite observations (R), (F ), etc. can be made, which explains

the conditions p # in those clauses. On the other hand, for any observation ' there could very

well be a � -transition to a state where ' can be observed. Therefore, clause (") introduces ' as a

hypothetical observation of p, provided that it admits internal activity to preceed it. Clause (:)

expresses that :' is a de�nite observation i� ' is not even a hypotetical observation, and likewise

that :' is a hypothetical observation i� ' is not a de�nite one.

Suppose that a process can be restarted from its initial state arbitrarily often, and can at those

occasions be exposed to all possible whether conditions. In that case it is not only possible to �nd

out that certain observations can be made, but also that certain observations cannot be made.

However, if the closure property 6� or 6� is selected, it may be that an observation cannot be made,

without this being observable. In this situation the class of hypothetical observations is extended

to all those observations for which it is not possible to �nd out that they cannot be made. In case

of divergence, it is for no observation ' 2

j

O(�) possible to �nd out that it cannot be made, so all

these observations belong to H

N

(p).
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4 May and must preorders and equivalences

Let N be a notion of observability. Two systems p can q are related by the N -may preorder if

whenever p may pass a test, q may pass this test too; they are related by the N -must preorder if

whenever p must pass a test, q must do so too. Here a test can be understood as a partular type

of interaction with the observer, imposed by the latter by manipulating the appropriate machine,

together with a designated set of observations resulting from this interaction, say the observations

f'

i

j i 2 Ig, that qualify as passing the test. p may pass the test if one of the observations '

i

can

be made, i.e. if

W

i2I

'

i

2 O

N

(p). p must pass the test, if (it can be observed that) no alternative

to the desired outcome can occur. Suppose for instance that the test consist of waiting until a

appears in the display, then blocking all actions except for b and c, and waiting until b happens,

and is de�ned to succeed if either something else than a happens �rst, or b actually happens right

after a, then p must pass this test i� p admits neither an observation acT nor a

g

fbg, and p cannot

divergence in its initial state or right after a. Thus for every may test there is an observation

' 2

j

O

N

(possibly a disjunction) such that p passes the test i� ' 2 O

N

(p), and for every must test

there is an observation  2

j

O

N

(p) (possibly a disjunction) such that p passes the test i�  62 H

N

(p).

In order to truly observe that p passes a must test, one has to assume a form of global testing that

makes it possible to observe all runs of the investigated system from its initial state.

De�nition 4 Two processes p; q 2 IP are N -equivalent, denoted p =

N

q, if O

N

(p) = O

N

(q).

p is N -(may) prequivalent to q, denoted p v

may

N

q, or simply p v

N

q, if O

N

(p) � O

N

(q).

p is N -must prequivalent to q, denoted p v

must

N

q, if H

N

(q) � H

N

(p).

p is N -may-and-must prequivalent to q, denoted p v

mm

N

q, if p v

may

N

q, and p v

must

N

q.

N -must equivalence and N -may-and-must equivalence are de�ned as expected.

Note that O

N

(p) � H

N

(p) for any p 2 IP, so p v

mm

N

q i� O

N

(p) � O

N

(q) � H

N

(q) � H

N

(p).

In case �; �; 6�; 6� 62 N , the relation v

must

N

is not a very useful one, as, in terms of the above

example, it is inpossible to require that p cannot diverge in its initial state or right after a. If

moreover :s ;�:;: 62 N , the relation v

may

N

coincides with v

may

N[f�g

or v

may

N[f�g

. For this reason such N

could be excluded from further investigation in De�nition 1.

For N and M notions of observability write N � M if p v

may

M

q ) p v

may

N

q as well as

p v

must

M

q ) p v

must

N

q for every LTS IP and p; q 2 IP. For S and T subsets of notions of observability

write S �

c

T if N �M for any notions N and M where M is N with S replaced by T .

Proposition 1 Let N and M be notions of observability with N \ f6�; 6�g =M \ f6�; 6�g. Then

N �M implies N �M .

Proof: Trivial, considering that O

N

(p) = O

M

(p) \

j

O

N

and H

N

(p) = H

M

(p) \

j

O

N

. 2

Proposition 2 f6�g �

c

f6�;

W

; 0g, f6�g �

c

f�;

W

g and f6�g �

c

f�;

W

g.

Proof: It su�ces to provide translations f; g :

j

O

N

!

j

O

M

, such that ' 2 O

N

(p) i� f(') 2 O

M

(p)

and ' 2 H

N

(p) i� g(') 2 H

M

(p). For the �rst statement f and g are recursively de�ned by

f(:') = :g(')

f(�~') = �f(~')

g(:') = :f(')

g(�~') = 0 _ �g(~')

(and similarly for :s , �: and :)

(for any other observation �~')

With induction on ' one checks that this translation has the required property. Two typical steps,

in which ==) denotes the reexive and transitive closure of

�

�!, are:

:' 2 O

N

(p) , ' 62 H

N

(p)

induction

, g(') 62 H

M

(p) , :g(') 2 O

M

(p)

a' 2 H

N

(p) , (p==)

a

�! q ^ ' 2 H

N

(q))_ (p==)q ^ q 6

�

�! (� 2 Act))_ p

�

�!

�

�! � � �

induction

,

(p==)

a

�! q ^ g(') 2 H

M

(q))_ (p==)q ^ q 6

�

�! (� 2 Act)) _ p

�

�!

�

�! � � � , 0 _ ag(') 2 O

M

(p)

For the other two statements 0 should be replaced by � and � respectivily. 2

11



Proposition 3 f0g �

c

fFg �

c

fFT; Tg, fFg �

c

fRg �

c

fRT; FT; Tg, fSg �

c

fFTg �

c

fF; ŝ g,

fRTg �

c

fR; ŝ g, fSg �

c

f ŝ g �

c

fS;^g, f ŝ g �

c

f

V

s g �

c

fS;

V

g, f^g �

c

f

V

g, f�g �

c

f�;

W

; 0g,

fRTg �

c

f ŝ ;

V

s ; a; Tg, fFg �

c

f

V

s ;:s ; a; Tg, f

V

s g �

c

f:s ;

W

g, fSg �

c

f:s g �

c

fS;�:g,

fSg �

c

f�:;

W

; Fg, fSg �

c

f�:;

W

;�g, f:s ; 6�g �

c

f�:; 6�g �

c

f:s ; 6�g, f

V

g �

c

f:;

W

g & f�:g �

c

f�;:g.

Proof: This follows from the following translations, that also hold with O replaced by H.

� 0 2 O

N

(p) ,

e

A 2 O

M

(p)

�

e

X 2 O

N

(p) ,

e

XT 2 O

M

(p)

�

e

X 2 O

N

(p) , (

e

X; ;) 2 O

M

(p)

� (X;

e

Y ) 2 O

N

(p) , X

e

Y T 2 O

M

(p)

� S' 2 O

N

(p) ,

e

;' 2 O

M

(p)

�

e

X' 2 O

N

(p) ,

e

X ŝ ' 2 O

M

(p)

� X' 2 O

N

(p) , (X;

e

;) ŝ ' 2 O

M

(p)

� S' 2 O

N

(p) , ' ŝ ' 2 O

M

(p)

� ' ŝ  2 O

N

(p) , S(' ^  ) 2 O

M

(p)

� '

1

ŝ '

2

2 O

N

(p) ,

V

s

i2f1;2g

'

i

2 O

M

(p)

�

V

s

i2I

'

i

2 O

N

(p) , S(

V

i2I

'

i

) 2 O

M

(p)

� '

1

^'

2

2 O

N

(p) ,

V

i2f1;2g

'

i

2 O

M

(p)

� � 2 O

N

(p) , � _ 0 2 O

M

(p)

� X' 2 O

N

(p) , ' ŝ

V

s

a2X

aT 2 O

M

(p)

�

e

X 2 O

N

(p) ,

V

s

a2X

:s aT 2 O

M

(p)

�

V

s

i2I

'

i

2 O

N

(p) , :s

W

i2I

:s '

i

2 O

M

(p)

� S' 2 O

N

(p) , :s :s ' 2 O

M

(p)

� :s ' 2 O

N

(p) , S�:' 2 O

M

(p)

� S' 2 O

N

(p) , �:(�:' _ �:

e

;) 2 O

M

(p)

� S' 2 O

N

(p) , �:(�:' _�) 2 O

M

(p)

� :s' 2 O

N

(p) , �:' 2 O

M

(p) (6� 2 N;M)

�

V

i2I

'

i

2 O

N

(p) , :

W

i2I

:'

i

2 O

M

(p)

� �:' 2 O

N

(p) , �:' 2 O

M

(p)

The appearence of � in the last line is needed to assure that the translation preserves membership

of

j

O(�), so that the e�ect of clauses � , ", 6� and 6� on both formulae will be the same. 2

Proposition 4 fF

�

g �

c

fFg, fFT

�

g �

c

fFTg, fR

�

g �

c

fRg, fRT

�

g �

c

fRTg and the state-

ments of Proposition 3 with F , FT , R and RT also hold with F

�

, FT

�

, R

�

and RT

�

respectivily.

Moreover fRT

�

g �

c

f ŝ ; a; Tg and f1g �

c

f

V

g.

Proof: Trivial or exactly as in the previous proof. The last one follows from Theorem 2. 2

Proposition 5 fa�g �

c

fa; �g and when : 62 N , then f�g [ N � N , fa�g [ N � fag [ N and

fbg [N � f^g [N .

Proof: If : 62 N , then �' 2 O

N[f�g

(p), ' 2 O

N

(p), as follows with a straightforward induction

on '. Furthermore (�')�(� ) 2 O

N[fbg

(p), �' ^ � 2 O

N

(p). 2

The results of this section are visualized in Figure 2. Every notion of observability corresponds

with a dot in this framework, that can be found with the naming convention of Table 1. The

lines in the picture (dotted and dashed lines have no special meaning) can be regarded as arrows

pointing upwards (unless there is an explicit arrowhead indicating otherwise), and N �M if there

is a path from N toM , not labelled \may". In that case each of the following six statements holds:

1. p v

may

M

q ) p v

may

N

q,

2. p =

may

M

q ) p =

may

N

q,

3. p v

must

M

q ) p v

must

N

q,

4. p =

must

M

q ) p =

must

N

q,

5. p v

mm

M

q ) p v

mm

N

q,

6. p =

mm

M

q ) p =

mm

N

q.

If there is a path labelled \may" only the �rst two statements hold.

In order to keep the �gure lucid, most notions with �-replication have not been drawn. One

should imagine that for each of the 45 di�erent notions from �nitary simulation (S

�

) to divergence

sensitive stability respecting delay bisimulation (DB

�

), there is also an �-variant, only 8 of which

are visible.

Theorem 1 For N and M notions of observability, each of the statements 1-6 hold if and only if

indicated in Figure 2.

Proof: By the counterexamples of Figure 3, in which =

N

denotes both =

may

N

and =

must

N

and similarly

6=

N

denotes both 6=

may

N

and 6=

must

N

. 2
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may

coupled
stably

simulation

may
may

infinitary

contrasimulation

bisimulation
stable
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convergent
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Figure 2: The linear time { branching time spectrum for in�nite processes with silent moves
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≠BB

≠BBvv

aτ

bτ

c

τ a

cτ

b

=WBη∆
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a
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b
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a

b
τ
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a

1 2 3 4 . . .
=FSsη*

≠R

a

2 3 4 . . .

a

1 3 4 . . .

a

1 2 4 . . . . . .

. . .

a

b

1

b

2

b

3

b

4

. . .

=RSsη*

≠SS0

≠S

a

b

2

b

3

b

4

. . .

a

b

1

b

3

b

4

. . .

a

b

1

b

2

b

4

. . . . . .

. . .

a aa a

b1 b2 b3

. . . aa a

b1 b2 b3

. . .=RSsη−

≠T0
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=RSη∆

≠T s0
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a

b

aa a . . .

Figure 3: Counterexamples
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5 Relational characterizations

Let IP be a PLTS, labelled over Act = A

�

[ f�g. If p ", the represented system may have transitions

that are not explicitly present in IP. Instead of writing p ", this information can also be represented

by drawing the hypotetical transitions in dashed lines, i.e. by letting p

�

��! q for any � 2 Act

and q 2 IP. In fact, one may wish to relax the assumption � 2 Act, and include a hypothetical

action `?'. For convenience I let �!� ��! . Now just as ==) denotes the reexive and transitive

closure of

�

�!, ==) denotes the reexive and transitive closure of

�

��! , i.e. a sequence of real

and hypotetical internal transitions. In case 6� or 6� 2 N , one can even further extend the space of

hypothetical transitions by including the ones whose presence cannot be refuted by observation.

De�nition 5 Let IP be a PLTS, labelled over Act. For p; q 2 IP and � 2 Act

?

= Act

�

[ f?g, write

� p

�

��! q if either p

�

�! q or p "

� p

�

��!

6�

q if either p

�

��! q or p

�

�! p

1

�

�! p

2

�

�! � � �

� p

�

��!

6�

q if either p

�

��!

6�

q or p 6

�

�! for � 2 Act.

==) denotes the reexive and tranistive closure of

�

��! , and similarly for ==)

6�

and ==)

6�

.

Write p * for 9q 2 IP : p==)

?

��! q, and similarly for p *

6�

and p *

6�

.

De�nition 6 Let (IP;!; ") be a (�-bounded) PLTS, labelled over Act = A

�

[ f�g, and let N be

a notion of observability containing

V

. An N|the name of N ends on `simulation'|is a pair of

binary relations R; S � IP � IP satisfying the clauses below (in which X � A, X

�

= X [ f�g and

a 2 A

�

[ f?g). The clauses for R are the ones marked with an element of N , whereas the ones for S

are the same clauses with the rôles of R and S exchanged, �! replaced by ��! , ��!

6�

or ��!

6�

,

and ==) replaced by ==) , ==)

6�

or ==)

6�

, depending on the presence of 6� or 6� in N .

(a) pRq ^ p

a

�! p

0

) 9q

0

: q==)

a

�! q

0

^ p

0

Rq

0

(a�) pRq ^ p

a

�! p

0

) 9q

0

: q==)

a

�! ==)q

0

^ p

0

Rq

0

(�) pRq ^ p

�

�! p

0

) 9q

0

: q==)q

0

^ p

0

Rq

0

(0) pRq ^ p 6

�

�! (�2A

�

) ^ p # ) 9q

0

: q==)q

0

6

�

�! (�2A

�

) ^ q

0

#

(F ) pRq ^ p 6

�

�! (�2X

�

) ^ p # ) 9q

0

: q==)q

0

6

�

�! (�2X

�

) ^ q

0

# (similarly for F

�

and R

(�)

)

(FT ) pRq ^ p 6

�

�! (�2X

�

)^ p # ) 9q

0

: q==)q

0

6

�

�! (�2X

�

)^ q

0

#^pRq

0

(similarly for FT

�

, RT

(�)

)

(S) pRq ^ p 6

�

�! ^p # ) 9q

0

: q==)q

0

6

�

�! ^q

0

# ^pRq

0

(�) pRq ^ p

a

�! p

0

) 9q

00

; q

0

: q==)q

00

a

�! q

0

^ pRq

00

^ p

0

Rq

0

(��) pRq ^ p

a

�! p

0

) 9q

00

; q

0

: q==)q

00

a

�! ==)q

0

^ pRq

00

^ p

0

Rq

0

(b) pRq ^ p

�

�! p

0

) 9q

00

q

0

: q==)q

00

^ (q

00

= q

0

_ q

00

�

�! q

0

) ^ pRq

00

^ p

0

Rq

0

(�) pRq ^ p

�

�! p

1

�

�! p

2

�

�! � � � ) q

�

�! q

1

�

�! q

2

�

�! � � � (similarly for �)

(:) pRq ) qSp

(�:) pRq ) 9q

0

: q==)q

0

^ q

0

Sp

(:s ) pRq ^ p 6

�

�! ^p # ) 9q

0

: q==)q

0

6

�

�! ^q

0

# ^q

0

Sp (^pRq

0

)

Theorem 2 p v

may

N

q i� there is an N(-simulation) (R; S) with pRq.

Similarly, p w

must

N

q i� there is an N(-simulation) (R; S) with pSq.
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Proof: \)": I show that the relations v

may

N

and w

must

N

satisfy the appropriate clauses for R and S.

(a) Suppose O(p) � O(q) and p

a

�! p

0

. I have to show that 9q

0

2 IP with q==)

a

�! q

0

and

O(p

0

) � O(q

0

). Suppose this is not the case. Let Q be fq

0

2 IP j q==)

a

�! q

0

g. Then for any

q

0

2 Q there is a '

q

0

2 O(p

0

)�O(q

0

). Thus for any such q

0

one has

V

q

0

2Q

'

q

0

2 O(p

0

)�O(q

0

).

But then a

V

q

0

2Q

'

q

0

2 O(p)�O(q), contradicting O(p) � O(q).

(FT ) Let O(p) � O(q) and p # 6

a

�! for a 2 X

�

. To show that 9q

0

2 IP with q==)q

0

#, q

0

6

a

�! for

a 2 X

�

and O(p) � O(q

0

). Suppose this is not the case. Let Q be fq

0

2 IP j q==)q

0

# ^q

0

6

a

�!

for a 2 X

�

g. Then for any q

0

2 Q there is a '

q

0

2 O(p)�O(q

0

). Thus for any such q

0

one has

V

q

0

2Q

'

q

0
2 O(p)� O(q

0

). But then

e

X

V

q

0

2Q

'

q

0
2 O(p)� O(q), contradicting O(p) � O(q).

(b) Let O(p) � O(q) and p

�

�! p

0

. To show that 9q

00

; q

0

2 IP with q==)q

00

^ (q

00

= q

0

_q

00

�

�! q

0

)^

O(p) � O(q

00

)^O(p

0

) � O(q

0

). Let Q

00

be fq

00

2 IP j q==)q

00

^9'

q

00

2 O(p)�O(q

00

)g and let Q

0

be fq

0

2 IP j q==)q

0

^9'

q

0

2 O(p

0

)�O(q

0

)g. Then (

V

q

00

2Q

00

'

q

00

)�(

V

q

0

2Q

0

'

q

0

) 2 O(p) � O(q),

so there must be q

00

; q

0

2 IP with q==)q

00

^(q

00

= q

0

_q

00

�

�! q

0

), such that q

00

62 Q

00

and q

0

62 Q

0

.

(:) Suppose O(p) � O(q) and ' 62 H(p). Then :' 2 O(p) � O(q), and this can only be the case

if ' 62 H(q). Hence H(q) � H(p), which had to be proved.

(�:) Let O(p) � O(q). I have to show that 9q

0

2 IP with q==)q

0

and H(q

0

) � H(p). Let Q be

fq

0

j q==)q

0

^ 9'

q

0

2 H(q

0

)� H(p)g. Then �:

W

q

0

2Q

'

q

0

2 O(p) � O(q), so

W

q

0

2Q

'

q

0

62 O(q

00

)

for certain q

00

2 Q with q==)q

00

, and hence q

00

62 Q, which had to be proved.

The other cases for v

may

N

are trivial or similar. The cases for w

must

N

follow the same lines, but the

proofs have to be slightly adapted to deal with divergence. I present one representative case. In

case 6� or 6� 2 N , the appropriate subscripts should be added to

a

��! , ==) and *.

(a�) Suppose H(p) � H(q) and p

a

��! p

0

. I have to show that 9q

0

2 IP with q ==)

a

��! ==) q

0

and H(p

0

) � H(q

0

). There are two possibilities: p * or a 2 A and p

a

�! p

0

.

In the former case �? 2 H(p) � H(q), where ? is the empty disjunction, or any other

observation we can be sure of that it can not be made for any process in IP. But �? 2 H(q)

is only possible if q *, and then trivially 9q

0

2 IP with q ==)

a

��! ==) q

0

and H(p

0

) � H(q

0

).

In the latter case let Q be fq

00

2 IP j q==)

a

�! ==)q

00

g. If either q * or q

00

* for certain

q

00

2 Q, a q

0

2 IP as required trivially exists. Suppose however that there is no such q

0

. Then

for any q

00

2 Q, there is a '

q

00

2 O(p

0

) � O(q

00

) and hence

V

q

00

2Q

'

q

00

2 O(p

0

)� O(q

00

). But,

using that neither q * nor q

00

*, a�

V

q

00

2Q

'

q

00

2 O(p)�O(q), contradicting O(p) � O(q).

\(": Let (R; S) be a pair of relations that satisfy the appropriate clauses. I have to show that

pRq ) (' 2 O

N

(p) ) ' 2 O

N

(q)) and pSq ) (' 2 H

N

(p)) ' 2 H

N

(q)) for ' 2

j

O

N

. I will do

so with induction on '. First note that always a or a� 2 N and � 2 N . Hence pSq ^ p * ) q *.

(a) Suppose pRq and a' 2 O(p). Then there is a p

0

2 IP with p==)

a

�! p

0

and ' 2 O(p

0

). As

R satis�es clauses (a) and (�), there must be a q

0

2 IP with q==)

a

�! q

0

and p

0

Rq

0

. So by

induction ' 2 O(q

0

), and hence a' 2 O(q).

Suppose pSq and a' 2 H(p). Then p * or there is a p

0

2 IP with p==)

a

�! p

0

and ' 2 H(p

0

).

In the former case q * and hence a' 2 H(q). In the latter case, since S satis�es clauses (a)

and (�), there must be a q

0

2 IP with q ==)

a

��! q

0

and p

0

Sq

0

. So by induction ' 2 H(q

0

),

and hence a' 2 H(q) by applying clauses (a), (�) and possibly ("; 6�; 6�) of De�nition 3.

(:s ) Suppose pSq and :s' 2 H(p). Then p * or there is a p

0

2 IP with p==)p

0

# 6

�

�! and ' 62 O(p

0

).

In the former case q * and hence :s ' 2 H(q). In the latter case, since S satis�es (:s ) and (�),

9q

0

2 IP with q ==) q

0

# 6

�

�! and q

0

Rp

0

. So by induction ' 62 O(q

0

), and hence :s ' 2 H(q).

The other cases go likewise. 2
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For � 2 A

�

, say � = a

1

a

2

� � �a

n

, p

�

==)q denotes p==)

a

1

�! ==)

a

2

�! ==) � � �==)

a

n

�! ==)q. For �

a sequence over A

?

= A [ f?g, the relations

�

==) ,

�

==)

6�

and

�

==)

6�

are de�ned likewise. These

multiple-action relations allow for alternative formulations of some of the relations of De�nition 6, in

which the clauses (a) and (�) are merged into one. Besides, they allow a relational characterization

of the various contra- and stable simulation preorders, that have no relational characterization in

terms of single-action relations. For � 2 Act

?

de�ne �̂ 2 A

�

?

by â = a for a 2 A

?

and �̂ = �.

De�nition 7 Let (IP;!; ") be a PLTS, labelled over Act = A

�

[ f�g, and let N be a notion

of observability containing �:,

V

s or

V

, not �, and not : with a. An N is a pair of binary re-

lations R; S � IP � IP satisfying the clauses below (applying the same conventions as before).

(

V

) pRq ^ p

�

==)p

0

) 9q

0

: q

�

==)q

0

^ p

0

Rq

0

(

V

s ) pRq ^ p

�

==)p

0

# 6

�

�! ) 9q

0

: q

�

==)q

0

# 6

�

�! ^p

0

Rq

0

(T ) pRq ^ p

�

==)p

0

) 9q

0

: q

�

==)q

0

(�:) pRq ^ p

�

==)p

0

) 9q

0

: q

�

==)q

0

^ q

0

Sp

Clauses (0); (F ) . . . (RT

�

); (S); (�); (�); (:) and (:s ) are exactly as in in De�nition 6, and clause

(1) is a more complicated version of clause (T ).

Note that De�nitions 6 and 7 agree where they de�ne the same notions.

Theorem 3 p v

may

N

q i� there is an N(-simulation) (R; S) with pRq.

Similarly, p w

must

N

q i� there is an N(-simulation) (R; S) with pSq.

Proof: \)" goes just as in the previous proof. \(" goes again with induction on ', but is a bit

more complicated then in the previous proof because the case ' = a does not work. However,

every observation ' that is not obtained by clause (1) is of the form �'

0

with � 2 A

�

and '

0

not of

the form a . Now the inductive proof lumps � together with the next operator, so that for instance

the case ��:' is considered, with the induction hypothesis applied to '. This is straightforward. 2

6 The literature

All encircled dots in Figure 2 correspond with preorders or equivalences found in the literature.

Trace and failure semantics The trace (may) preorder v

T

and equivalence =

T

, obtained by

taking N = fT; a�; �; �;

W

g, is the familiar notion that can be found, for instance, in Hoare [23].

The failure must preorder v

must

F

, is the preorder v proposed in Brookes & Roscoe [10], a typed

version of which appears in Hoare [24]. The divergences of [10, 24] correspond with observations

of the form �? with � 2 A

�

and ? the empty disjunction. In Brookes, Hoare & Roscoe [9]

a version of failure semantics appears in which the refusal sets are �nite. The resulting preorder

is close to what here is called the �nite failure must preorder (v

must

F

�

), but the divergences were

missing. As this was considered to be a shortcoming, they were added in [10].

The may and must testing preorders from Hennessy & De Nicola [14] correspond with

the trace may (v

may

T

) and failure must preorder (v

must

F

) in my framework. The reason for this

discrepancy is that the environment in the setup of [14] is a CCS-context (of a particular form).

With some e�ort a CCS-context can be recognized as a generative machine with switches and

display, but no lights or duplication button. This explains the preorder v

may

T

. For must testing

however, something equivalent to the green light is observable as well, due to the presence of

interleaving operators. Namely put a process p (to be tested) in the context were it is interleaved

with a system that performs an internal action and subsequently reports success. If p is idle, the

context will perform the internal action and must report success; but as long as p is not idle,

there is no certainty that the silent action of the context will ever be scheduled, so success is not
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guaranteed. Thus the necessity of success in this context corresponds to the green light going o�

in my setup, but can only occur at the end of an observation, explaining why v

must

F

is obtained.

It should be noted that the must preorder of [14] would have been coarser if the CCS composition

(j) would have been interpreted as a parallel composition. In that case in would not depend on p

whether the parallel component must reach the state were success is reported, and there would be

no way detect idle states.

In De Nicola [13] the must equivalence of [14] has been shown to coincide with the failure

equivalence of [9, 24] as well as with two equivalences proposed by Kennaway and Darondeau

respectively. The results were established for �nitely branching processes without divergence. The

preorders of [14] were de�ned for a PLTS such that processes with in�nitely many outgoing tran-

sitions are underspeci�ed. On such a domain the preorders v

must

F

and v

must

F

�

coincide. Outside this

domain both notions are slightly problematic, and in order to cope better with unbounded nonde-

terminism an in�nitary version of failure semantics was proposed in Roscoe [37], corresponding

with my in�nitary failure must equivalence (=

must

F

1

).

In Bergstra, Klop & Olderog [7] three versions of failure semantics, among which two

new ones, were compared, namely failure equivalence with explicit divergence, failure equivalence

with catastrophic divergence, and failure equivalence with fair abstraction of unstable divergence.

If I abstract from the root condition (F2), used to make the equivalence a congruence w.r.t. the

+-operator, and the distinction between deadlock and successful termination (F3) in [7], these are

=

mm

F

, =

must

F

and =

may

F

respectively.

Other decorated trace semantics Readiness semantics and the preorder v

must

R

comes from

Olderog & Hoare [30]. Finite readiness semantics (=

R

�) is studied in Rounds & Brookes

[38] under the name acceptance-refusal semantics, but only for processes without silent steps. The

preorders v

may

FT

�

, v

must

FT

�

and v

mm

FT

�

originate from Phillips [34]. There =

mm

F

�

is called refusal equiva-

lence. Ready trace equivalence (=

RT

) was introduced independently by Pomello [36] (as exhibited

behaviour equivalence), Pnueli [35] (as barbed equivalence), and Baeten, Bergstra & Klop [4].

In [36] the menus are collected also in non-stable states, resulting in an equivalence that falls out-

side my classi�cation, but coincides with =

RT

for � -free processes. The versions of [35] and [4] are

de�ned for � -free processes only. The generalization to processes with silent moves, as well as the

analogous notion of failure trace equivalence (=

FT

), was �rst reported in Baeten [2], who refers

further back to the research reported here. Failure equivalence and the failure may preorder (v

FT

)

also appear in Langerak [26], where moreover a generalized failure preorder and equivalence is

introduced, corresponding with my stability respecting failure preorder (v

F

s

) and equivalence.

Simulation and ready simulation semantics The simulation preorder (v

S

) for systems with-

out invisible actions appears in Park [31]. In Bloom, Istrail & Meyer [8] the ready simulation

preorder (v

RS

) is introduced for �nitely branching processes without silent moves. Several argu-

ments are presented suggesting that =

RS

is the �nest equivalence that `makes computationally

meaningful distinctions'. In accordance with this analysis, all �ner equivalences that appear here

use some form of global testing. In Ulidowski [40] the work of [8] is generalized to a setting with

silent moves. Ulidowski concludes that copy+refusal equivalence, attributed to I. Phillips [Copy

testing, unpublished manuscript, 1985], is the `�nest observable equivalence'. Here copy+refusal

equivalence is with what I call stability respecting �nite failure simulation may-and-must equiv-

alence (=

mm

FS

s�

). Also the corresponding may and must preorders are investigated. The present

paper contributes a dozen alternative generalizations of ready simulation. The relative merits of

these seem to need further study.

Weak bisimulation semantics By De�nition 7 a weak bisimulation is a pair of relations R; S �

IP� IP satisfying clauses (

V

) and (:). Clause (:) says that S is the inverse of R, so the notion can

be reformulated as a binary relation R � IP � IP satisfying, for � 2 A

�

?

,

{ pRq ^ p

�

==) p

0

) 9q

0

: q

�

==) q

0

^ p

0

Rq

0

,

{ pRq ^ q

�

==) q

0

) 9p

0

: p

�

==) p

0

^ p

0

Rq

0

.
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If one restricts attention to the case that IP is a total LTS, i.e. "= ;, there is no di�erence between

the relations

�

==) and

�

==), and one obtains the familiar de�nition of a weak bisimulation from

Milner [28]. The equivalent de�nition of a weak bisimulation in terms of single-action relations,

that appears in Milner [29], is obtained in same way by taking clauses (a�), (�) and (:) of

De�nition 6.

Note that in the presence of clause (:) there is no di�erence between the may and must pre-

orders. Moreover, when "= ; and the closure properties 6� and 6� are absent, the must preorder

is the inverse of the may preorder. As in the case of weak bisimulation on a total LTS both are

true, the weak bisimulation preorder coincides with the associated equivalence. Weak bisimulation

equivalence is what Milner calls observation equivalence.

A convergent weak bisimulation (WB

#

= fT; a�; �; �;

W

; 0;

V

;:; 6�g) is a pair of relations R; S �

IP � IP satisfying clauses (a�), (�) and (:) of De�nition 6, with the dashed arrows subscripted by

6�. In this context the clauses (0), (S), (F ), (RT ), etc. are redundant by Proposition 3. Again S

is the inverse of R and the notion can be reformulated as a relation R satisfying, for � 2 Act

?

,

{ pRq ^ p

�

�! p

0

) 9q

0

: q

�̂

==) q

0

^ p

0

Rq

0

,

{ pRq ^ q

�

��!

6�

q

0

) 9p

0

: p

�̂

==)

6�

p

0

^ p

0

Rq

0

.

If p *

6�

� denotes p *

6�

_p

�̂

==)p

0

*

6�

, and p +

6�

� denies p *

6�

�, then the last clause is equivalent to

{ pRq ^ q

?

��!

6�

) p *

6�

� (in which q

?

��!

6�

may be replaced by q *

6�

or even q *

6�

�),

{ pRq ^ q

�

�! q

0

) p *

6�

� _ 9p

0

: p

�̂

==)p

0

^ p

0

Rq

0

,

which is in turn equivalent to

{ pRq ^ p +

6�

� ) (q +

6�

� ^ (q

�

�! q

0

) 9p

0

: p

�̂

==)p

0

^ p

0

Rq

0

)).

In this shape the convergent weak bisimulation preorder (v

WB

#

, no di�erence between may and

must) can be recognized as the bisimulation preorder studied in Stirling [39], Abramsky [1] and

Walker [41], the idea of which originates from Hennessy & Plotkin [22].

In Bergstra, Klop & Olderog [7] bisimulation semantics with explicit divergence is in-

troduced. If I abstract from the root condition (B4) and the distinction between deadlock and

successful termination (B5) in [7], their �-bisimulation|the � is pronounced `delay' and is used

as a constant representing divergence in their system description language|is a symmetric relation

satisfying properties (

V

) and (�). Thus the resulting equivalence is what I call divergence sensitive

stability respecting weak bisimulation equivalence (=

WB

�
). Note that WB

�

is �ner than both WB

and WB

#

, which are incomparable.

Delay bisimulation semantics A convergent delay bisimulation DB

#

= fT; a; �; �;

W

; 0;

V

;:; 6�g

can be formulated as a relation R � IP� IP satisfying, for � 2 Act

?

,

{ pRq ^ p

�

�! p

0

) 9q

0

: q

�̂

==)

0

q

0

^ p

0

Rq

0

,

{ pRq ^ q

�

��!

6�

; q

0

) 9p

0

: p

�̂

==)

06�

p

0

^ p

0

Rq

0

.

Here p

�

==)

0

q with � = a

1

a

2

� � �a

n

denotes p==)

a

1

�! ==)

a

2

�! � � �==)

a

n

�! q, and similarly for

�

==)

06�

. As before, the second clause is equivalent to

{ pRq ^ p +

6�

) (q +

6�

^(q

a

�! q

0

) 9p

0

: p

â

==)

0

p

0

^ p

0

Rq

0

)).

This is the preorder proposed in Milner [27], and also studied in Abramsky [1] and Walker

[41]. The uniform characterization with the dashed arrows of the last two preorders may be helpful

to explain why, as observed in [1, 41], the convergent weak bisimulation preorder needs the pa-

rameterized convergence predicates f+

6�

� j � 2 Actg, whereas the convergent delay bisimulation

preorder can be conveniently described by means of the single convergence predicate +

6�

.

Delay bisimulation equivalence (=

DB

) stems fromWeijland [42]. There is was called that way

because it corresponded with the �-bisimulation of [7] when translating asynchrony in synchrony.

The name could be alternatively explained by the double arrow on right in clause (a), saying that

when a button is put under pressure, we take for granted that there is a delay before it goes down.

However, most other notions considered here have even more delay, so alert bisimulation is maybe

a better name.
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Branching bisimulation semantics By De�nition 6 a branching bisimulation (BB) on a total

LTS IP can be formulated as a symmetric relation R � IP � IP satisfying, for � 2 Act

?

,

{ pRq ^ p

�

�! p

0

) 9q

00

q

0

: q==)q

00

^ ((� = � ^ q

00

= q

0

) _ q

00

�

�! q

0

) ^ pRq

00

^ p

0

Rq

0

.

This is what was called a semi branching bisimulation in Van Glabbeek & Weijland [20],

were branching bisimulation equivalence was introduced. By (the proof of) Lemma 1.1 in [20]

two processes are related by a branching bisimulation i� they are related by a semi branching

bisimulation, and hence the notion of branching bisimulation equivalence (=

BB

) that arises here

is the same as the one from [20]. In De Nicola & Vaandrager [15] a modal characterization

(among two others) of branching bisimulation is provided using until operators. They have a binary

until operator

=

n

�̂

n

=

for � 2 Act de�ned by '

=

n

�̂

n

=

 62

j

O(�) and

'

=

n

�̂

n

=

 2 O(p) i� �=� ^  2 O(p) or p = p

0

�

�! � � �

�

�! p

n

�

�! q ^ ' 2 O(p

i

) (i � n) ^  2 O(q):

Alternatively they could have used the operators

=

n

�

n

=

, de�ned similarly, but with �=� ^';  2 O(p)

instead of �=� ^  2 O(p), which are equally expressive since

'

=

n

�

n

=

 2 O(p) ,  _ '

=

n

�

n

=

 2 O(p) and '

=

n

�

n

=

 2 O(p) , ' ^ '

=

n

�

n

=

 2 O(p):

The operators

=

n

�̂

n

=

and

=

n

�

n

=

clearly grasp the idea of continuous copying. But in the presence of :

and

W

, the apparently weaker operators � and b|weaker because '� , �('

=

n

�

n

=

 )|induce the

same identi�cations on PLTSs, namely branching bisimulation equivalence.

In branching bisimulation semantics the observation � of divergence is arguably not powerful

enough. Namely the facility of continuous copying allows one to make observations of the form �',

saying that no activity is observed during an in�nite period of time, but each copy made during

this period admits the observation '. Formally

�' 2 O

N

(p) i� p

�

�! p

1

�

�! p

2

�

�! � � � ^ ' 2 O(p

i

) for i 2 IN:

The corresponding clause in the relational characterization of De�nition 6 is

p

0

�

�! p

1

�

�! p

2

�

�! � � � ^ p

i

Rq

0

for i 2 IN ) q

0

�

�! q

1

�

�! q

2

�

�! � � � ^ p

i

Rq

j

for i; j 2 IN:

This improved notion of divergence sensitive stability respecting branching bisimulation corresponds

with the branching bisimulation with explicit divergence of [20]. The similarly improved divergence

sensitive branching bisimulation coincides, for �nite state LTSs, with the one proposed in De

Nicola & Vaandrager [15], that in turn coincides, after proper translation between state-labelled

and transition-labelled transition systems [15], with with the stuttering equivalence of Browne,

Clarke & Gr

�

umberg [11], that is characterized by the temporal logics CTL and CTL

�

, each

without next-time operator.

Other bisimulation equivalences (Weak) �-bisimulation equivalence (=

WB

�

), originates from

Baeten & Van Glabbeek [5], the preorders v

WB

�#
and v

BB

#
are mentioned in [20], and

the equivalence =

DB

�

is introduced independently as quasi branching bisimulation equivalence in

Cherief [12] and as simple branching bisimulation by Jan van Eijck [personal communication].

Coupled simulation and stable bisimulation semantics Stable bisimulation semantics was

introduced in Van Glabbeek [16] for �nite processes (representable as �nite trees without diver-

gence). Its name and complete axiomatization was quoted already in Beaten [2], but there the

de�nition was left as an exercise for the reader. The present paper o�ers 13 possible generalizations

(including the contrasimulations) of this notion to in�nite processes with divergence. Similarly,

coupled simulation for divergence-free processes was introduced in Parrow & Sj

�

odin [32]. The

present paper presents o�ers 9 generalizations to processes with divergence. One of those, in my

terminology simply `coupled simulation', is called weakly coupled simulation in Parrow & Sj

�

odin

[33], where for divergence-free agents it is proven to coincide with the notion from [32].
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Possible futures and nested simulations The notions of n-nested simulation equivalence of

Groote & Vaandrager [21] and possible futures equivalence of Rounds & Brookes [38] have

never been considered in a setting with silent moves. However, the former can be treated by

considering the observations for weak or stable bisimulation that have at most n � 1 levels of

nesting of occurrences of the negation operator, and the latter by considering the observations for

(stable) simulation that have no nested occurrences of the conjunction.

7 Concluding remarks

In this paper 155 notions of observability and corresponding must and may equivalences have been

reviewed. The reason for selecting just these, is that they can be motivated rather nicely with a

testing scenario and/or play a rôle in the literature on semantic equivalences. This paper did not

exhaust all interesting equivalences. In Van Glabbeek [16] for instance I propose a � -spectrum,

such that an interesting equivalence is determined by a position in the linear time { branching time

spectrum (Figure 2), together with a position in the � -spectrum. This paper dealt with the most

abstract point of the � -spectrum, the most concrete being the one where � -actions are treated just

like visible actions. In between there is for instance the possibility that (roughly) corresponds to a

version of De�nition 3 in which

j

O(�) only contains the observations of the form �'.

In this paper the set A of visible actions has been �xed. This means that a minimum level of

abstraction is considered. It is still possible to represent processes at a higher level of abstraction,

by replacing certain actions by � . As it seems to be reasonable to require that a move towards

a higher level of abstraction would not make two equivalent processes inequivalent, a minimum

requirement for a useful equivalence could be that it is a congruence for the abstraction operator

(remaining into �). The 21 `stability respecting' notions that contain observation S, but not FT

(or the stronger observation :s ) (including the one from [26]) fail this requirement, as can be seen

by renaming f into � in the only counterexample of Figure 3 that features an f , and by abstracting

from c in the example below. Moreover, the `�nite' notions (with a

�

, i.e. the bottom plane in

Figure 2) are not preserved under abstraction of in�nitely many actions (namely the actions b

i

in

a version of the appropriate example in Figure 3 with a � -loop after each b

i

). The `�nite' preorders

and equivalences also fail to be preserved under other in�nitary non-injective relabellings (renaming

in�nitely many actions into the same action a 2 A). This may explain why such relabellings are

excluded in the system description language CSP. It does not contradict the congruence theorem in

Phillips [34], as that refers to a version of CCS with only injective relabellings. At several places

in the literature versions of failure or readiness semantics appear that take refusal sets or menus

also in unstable states. For v

must

F

this doesn't make a di�erence, but elsewhere this leads again to

preorders that are not preserved under abstraction. For this reason these approaches are not treated

here. Also notions with explicit divergence that do not contain in�nitely long observations yield no

congruences for abstraction (except of course when the in�nite observations can be deduced from

the �nite ones, as is the case for �nite-state behaviours), and are therefore not considered here.

Finitary must preorders are precongruences for abstraction when restricted to systems that diverge

where they are in�nitely branching (as in [14]). If in�nitary abstraction was considered in CSP

[9, 10, 24], where this restriction is not observed, it could not commute with �nitary abstraction (i.e.

it matters whether �rst a single actions is hidden and subsequently an in�nite set of actions or vice

versa). It is for this reason that an in�nitary version of failure semantics was proposed in Roscoe

[37]. However, in�nitary equivalences without

V

or �:;: fail to satisfy the Recursive Speci�cation

Principle (RSP) of Baeten, Bergstra & Klop [3], that says that systems of guarded recursive

equations have a unique solution.

At this place I can only touch upon the criteria that could be applied for selecting one equivalence

over the other. Being a congruence for abstraction is one, and being a congruence for the other CSP

operators could be another such criterion. This would rule out the 16 `completed' may and must

preorders, which fail to be precongruences for the restriction operator of CCS or the synchronous

composition of CSP. I conjecture that the 155�21�16 = 118 remaining may and must preorders are
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preserved by all CSP operators, and the 118� 11 = 107 non-�nite ones also for the CCS operators

except +. Another criterion could be satisfying RSP. This would leave 107� 15 = 92 notions.

It is often argued that global testing is not a realistic testing scenario, and therefore some variant

of ready simulation semantics represents the limit of observable behaviour. Obviously, testing for

divergence is also unrealistic as it requires in�nitely long observations. However, since Lamport

[25], there is widespread consensus that lifeness properties are important in the veri�cation of

concurrent systems. This means (among others) that one wants to distinguish between a system

a�b that surely will do a b some day, and a system a(�b+ �

!

) that very well may fail to ever do

a b-move. This distinction can be made with global testing or explicit divergence, but also with

must-preorders, which are (therefore?) very popular, even omong the ones that reject global testing

(such as Ulidowski [40]). However, the di�erence between a�b and a(�b+�

!

) is not observable by

�nitary means without assuming some form of global testing. I therefore argue that must-testing

is a special case of global testing and if one accepts must-testing, the case against general global

testing is very weak. In each case something fairly unobservable is needed to cope with lifeness.

Furthermore, if one rejects the progress assumption made earlier, lifeness is lost from the onset,

and also the concept of must-testing becomes meaningless.

Koomen's Fair Abstraction Rule (KFAR) (Baeten, Bergstra & Klop [3]), expresses a global

fairness assumption. It says that when possible a system will escape from any cycle of internal

actions. Some form of KFAR is crucial for many protocal veri�cations with unreliable channels,

and for that reason preorders and equivalences that satisfy KFAR are of special interest. Must

preorders and divergence sensitive ones cannot satisfy KFAR. In Bergstra, Klop & Olderog

[7] it is shown that the combination of KFAR with failure semantics is inconsistent, but they

formulate a weaker version of KFAR that is satis�ed in failure may-semantics. Still the combination

of KFAR

�

and the liveness requirement appears to require global testing, and is only satis�ed in

the semantics between contrasimulation (C) and stability respecting branching bisimulation (BB

s

).

These requirements would reduce the number of suitable preorders to 18.

It is in general a good strategy to do your veri�cations using the �nest preorder possible.

This way you don't have to redo your veri�cations if you decide that your original preorder was

not �ne enough (but as veri�cations deal usual with equational properties, they remain valid if

you descend to a coarser preorder [19]). This is in my opinion the most compelling argument

for using bisimulation semantics, and branching bisimulation in particular [20]. But sometimes

a veri�cation cannot be carried out in bisimulation semantics, as the systems compared are not

(weak or branching) bisimulation equivalent. Examples of this can be found in Van Glabbeek &

Vaandrager [19] and Parrow and Sj

�

odin [32]. In these cases, and probably in many others, it is

not nessesary to descend to the level of for instance failure semantics; any equivalence of this paper

that is coarser then weak bisimulation would do. In combination with the requirements KFAR

and lifeness (which are not relevant or even desirable in every situation), this would leave just

coupled simulation and contrasimulation (in a few variations). In [32], were coupled simulation was

introduced, another argument was given, namely that it has a relational characterization in terms

of single-action relations, which makes it easy to establish the existence of a coupled simulation

between two processes. This advantage is not shared with contrasimulation. But if one would not

be interested in KFAR, also the various (ready-)simulations share this property.

It is well known that most of the equivalences discussed here fail to be congruences w.r.t. the

CCS +. One approach to this problem is to abandon this operator in favor of CSP-styled choice

operators. Another approach is to re�ne the equivalenes slightly, only a�ecting the part near the

initial state of processes, so that they become congruences [29]. Here, from the second point of

view, I would like to argue that the problem arises from not fully observing the green light. The

CCS processes 0 and �:0 for instance are equivalent under all notions considered here, but they are

not congruent, as a + 0 di�ers from a + �:0. But if one can not only observe that the green light

is o�, but also that it is on, the processes are no longer equivalent, as in �:0 the light goes on and

then o�, whereas in 0 it stays of. Now upgrading the notions of observability with an observation

1 (saying that the light is on), gives exactly the required congruences. In case we have 1 2 N but
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not 0 2 N , one can observe it when the light is on, but not that it is o�. This idea needs futher

elaboration, and yields a fourth point on the � -spectrum.

It is left for a future occassion to extend this work with parallelism, and to establish complete

axiomatizations. Complete axiomatizations (without proofs) of T , T

0

, F , R, FT , RT , SB and B

congruence for �nite divergence-free processes are collected already in [16] and an axiomatization

for coupled simulation congruence is provided in Parrow & Sj

�

odin [33].
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